Introducing Linggle: From Concordance to Linguistic Search Engine

Jason S. Chang
Department of Computer Science
National Tsing Hua University
son.jschang@gmail.com

Abstract
We introduce a Web-scale linguistics search engine, Linggle, that retrieves lexical bundles in response to a given query. Unlike a typical concordance, Linggle accepts queries with keywords, wildcard, wild part of speech (PoS), synonymous words, and additional regular expression (RE) operators, and returns bundles with frequency counts. In our approach, we argument Google Web 1T corpus with inverted file indexing, PoS information from BNC, and semantic indexing based on Latent Dirichlet Allocation. The method involves parsing the query to transforming the query to several keyword retrieval commands, retrieving word chunks with counts, filtering the chunks again the query as a RE, and finally displaying the results according the count, similarity, and topic. Clusters of synonymous or conceptually related words are also provided. In addition, Linggle provide example sentences from The New York Times on demand. The current implementation of Linggle is the most comprehensive functionally, and is in principle language and dataset independent. We plan to extend Linggle to provide a fast and convenient access to a wealth of linguistic information embodied in Web scale datasets including Google Web 1T and Google Books Ngram for many major languages in the World.

For non-native speakers, doubts concerning the usage of a preposition, the mandatory presence of a determiner, the correctness of the association of a verb with an object or the need for synonyms of a term in a given context are problems that arise frequently when writing in English. Printed collocation dictionaries and reference tools based on compiled corpora offer limited coverage of word usage while knowledge of collocations is vital for the competent use of a language. We propose to address these limitations with a comprehensive system that truly aims at letting learners “know a word by the company it keeps”. Linggle (linggle.com) is a broad coverage language reference tool for English as Second Language learners (ESL). The system is designed to access words in context under various forms.

First, we build inverted file index for the Google Web 1T Ngram to support queries with RE-like patterns including PoS and synonym matches. For example, for the query “$V $D +important role”, Linggle retrieve 4-gram chunks that start with a
verb and a determiner followed by a important synonym and the keyword role (e. g.,
play a key part 15,900). A natural language interface is also available for users that
would be less familiar to pattern based search. For example the question “How can I
describe a beach?” would retrieve two word chunks with count such as “sandy beach
413,300” and “rocky beach 16,800”. The n-gram search implementation is achieved
through filtering, re-indexing, and populating Web 1T ngram in a HBase database and
augmenting them with the most frequent PoS for words (without disambiguation)
derived from the British National Corpus.

The n-grams resulting from the queries can then be linked to examples extracted
from the New York Times Corpus in order to provide full sentential context for more
effective learning. In some situations, users might need to search for words in a specific
syntactic relation (i. e., collocates). Let’s consider the example “absorb $N” that
queries all the objects of the verb absorb. In this case, grouping the words that belong to
similar domains together offers a better overview of the usage of the verb than a list of
objects ordered by frequency. For example the verb absorb takes clusters of objects
related to the topic liquid/energy, but also to the topics money, knowledge or
population.

This tendency of predicates to prefer certain classes is defined by Wilks (1978) as
selectional preference and widely reported in the literature. Linggle proposes preferred
clusters of synonymous query arguments of adjectives, nouns and verbs. The clustering
is achieved by building on Lin and Pantel (2002)’s large-scale repository of
dependencies and word similarity scores and on an existing method for selectional
preference induction with a Latent Dirichlet Allocation (LDA) model.
References

